The article showcases concise Python code snippets (one-liners) for common machine learning tasks like data splitting, standardization, model training (linear regression, logistic regression, decision tree, random forest), and prediction, leveraging libraries such as scikit-learn.
| **#** | **One-Liner**                                      | **Description**                                                                     | **Library**       | **Use Case**                                    |
|-----|-----------------------------------------------------|-------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|
| 1   | `from sklearn.datasets import load_iris; X, y = load_iris(return_X_y=True)` | Loads the Iris dataset, a classic for classification.                                  | scikit-learn    | Loading a standard dataset.                    |
| 2   | `from sklearn.model_selection import train_test_split; X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)` | Splits the dataset into training and testing sets.                                 | scikit-learn    | Preparing data for model training & evaluation.|
| 3   | `from sklearn.linear_model import LogisticRegression; model = LogisticRegression(random_state=1)` | Creates a Logistic Regression model.                                                   | scikit-learn    | Binary Classification.                          |
| 4   | `model.fit(X_train, y_train)`                        | Trains the Logistic Regression model.                                                | scikit-learn    | Model training.                                 |
| 5   | `y_pred = model.predict(X_test)`                     | Predicts labels for the test dataset.                                                 | scikit-learn    | Making predictions.                             |
| 6   | `from sklearn.metrics import accuracy_score; accuracy = accuracy_score(y_test, y_pred)` | Calculates the accuracy of the model.                                                | scikit-learn    | Evaluating model performance.                   |
| 7   | `import pandas as pd; df = pd.DataFrame(X, columns=iris.feature_names)` | Creates a Pandas DataFrame from the Iris dataset features.                             | Pandas          | Data manipulation and analysis.                 |
| 8   | `df 'target' »  = y`                                  | Adds the target variable to the DataFrame.                                          | Pandas          | Combining features and labels.                  |
| 9   | `df.head()`                                          | Displays the first few rows of the DataFrame.                                         | Pandas          | Inspecting the data.                            |
| 10  | `df.describe()`                                      | Generates descriptive statistics of the DataFrame.                                    | Pandas          | Understanding data distribution.                |